(2x^2+5x-8)=(3x^2-6x+2)

Simple and best practice solution for (2x^2+5x-8)=(3x^2-6x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^2+5x-8)=(3x^2-6x+2) equation:



(2x^2+5x-8)=(3x^2-6x+2)
We move all terms to the left:
(2x^2+5x-8)-((3x^2-6x+2))=0
We get rid of parentheses
2x^2+5x-((3x^2-6x+2))-8=0
We calculate terms in parentheses: -((3x^2-6x+2)), so:
(3x^2-6x+2)
We get rid of parentheses
3x^2-6x+2
Back to the equation:
-(3x^2-6x+2)
We get rid of parentheses
2x^2-3x^2+5x+6x-2-8=0
We add all the numbers together, and all the variables
-1x^2+11x-10=0
a = -1; b = 11; c = -10;
Δ = b2-4ac
Δ = 112-4·(-1)·(-10)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-9}{2*-1}=\frac{-20}{-2} =+10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+9}{2*-1}=\frac{-2}{-2} =1 $

See similar equations:

| -7(k+4)-(-8k-7)=-8 | | -12g-6=-13g-2 | | -1,5x=5 | | -7x=-1,3 | | 100-x=25 | | 5x+2=10+2 | | 3^-9y=4 | | 5/9+x/9=1 | | (2/3)x=7 | | Z^2+1-i=0 | | p=254-118 | | 4x=0,6 | | 40=x*3/20 | | x/8=x+3/16 | | 40=(40x)/(x+20) | | 9x+1=89 | | 5x+27=10x | | 5x+27=5x | | 1/2+4/x=5/12 | | 7c+6=76 | | a=2+3a-8 | | 7m+6=76m= | | 5/2x+2=1/2=1/2x | | 8n=315 | | 8n=3215 | | -14=117-15y | | 8+6n=8n+8 | | −5(2x+3)=−2x−(4−3x) | | n+75=138 | | P=4(x+2) | | 2/9=14/t | | ¡8+3x=18+3x |

Equations solver categories